Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.683
Filtrar
1.
ACS Infect Dis ; 10(4): 1405-1413, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38563132

RESUMO

Endochin-like quinolones (ELQs) define a class of small molecule antimicrobials that target the mitochondrial electron transport chain of various human parasites by inhibiting their cytochrome bc1 complexes. The compounds have shown potent activity against a wide range of protozoan parasites, including the intraerythrocytic parasites Plasmodium and Babesia, the agents of human malaria and babesiosis, respectively. First-generation ELQ compounds were previously found to reduce infection by Babesia microti and Babesia duncani in animal models of human babesiosis but achieved a radical cure only in combination with atovaquone and required further optimization to address pharmacological limitations. Here, we report the identification of two second-generation 3-biaryl ELQ compounds, ELQ-596 and ELQ-650, with potent antibabesial activity in vitro and favorable pharmacological properties. In particular, ELQ-598, a prodrug of ELQ-596, demonstrated high efficacy as an orally administered monotherapy at 10 mg/kg. The compound achieved radical cure in both the chronic model of B. microti-induced babesiosis in immunocompromised mice and the lethal infection model induced by B. duncani in immunocompetent mice. Given its high potency, favorable physicochemical properties, and low toxicity profile, ELQ-596 represents a promising drug for the treatment of human babesiosis.


Assuntos
Babesiose , Quinolonas , Camundongos , Humanos , Animais , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Quinolonas/farmacologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico
2.
Mol Biol Rep ; 51(1): 566, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656625

RESUMO

BACKGROUND: Escherichia coli is the most common etiological agent of urinary tract infections (UTIs). Meanwhile, plasmid-mediated quinolone resistance (PMQR) is reported in E. coli isolates producing extended-spectrum ß-lactamases (ESBLs). Furthermore, the reservoirs and mechanisms of acquisition of uropathogenic Escherichia coli (UPEC) strains are poorly understood. On the other hand, UTIs are common in pregnant women and the treatment challenge is alarming. METHODS AND RESULTS: In the present study, 54 pregnant women with acute cystitis were included. A total of 108 E. coli isolates, 54 isolates from UTI and 54 isolates from faeces of pregnant women (same host) were collected. In the antimicrobial susceptibility test, the highest rate of antibiotic resistance was to nalidixic acid (77%, 83/108) and the lowest rate was to imipenem (9%, 10/108). Among the isolates, 44% (48/108) were ESBLs producers. A high frequency of PMQR genes was observed in the isolates. The frequency of PMQR genes qnrS, qnrB, aac(6')-Ib-cr, and qnrA was 58% (63/108), 21% (23/108), 9% (10/108), and 4% (4/108), respectively. Meanwhile, PMQR genes were not detected in 24% (20/85) of isolates resistant to nalidixic acid and/or fluoroquinolone, indicating that other mechanisms, i.e. chromosomal mutations, are involved in resistance to quinolones, which were not detected in the present study. In ESBL-producing isolates, the frequency of PMQR genes was higher than that of non-ESBL-producing isolates (81% vs. 53%). Meanwhile, UTI and faeces isolates mainly belonged to phylogenetic group B2 (36/54, 67% and 25/54, 46%, respectively) compared to other phylogenetic groups. In addition, virulence factors and multidrug-resistant (MDR) were mainly associated with phylogenetic group B2. However, predominant clones in faeces were not found in UTIs. Rep-PCR revealed the presence of 85 clones in patients. Among the clones, 40 clones were detected only in faeces (faeces-only), 35 clones only in UTI (UTI-only) and 10 clones in both faeces and UTI (faeces-UTI). We found that out of 10 faeces-UTI clones, 5 clones were present in the host's faeces flora. CONCLUSION: This study revealed a high rate of resistance to the quinolone nalidixic acid and a widespread distribution of PMQR genes in MDR E. coli strains producing ESBLs. The strains represented virulence factors and phylogenetic group B2 are closely associated with abundance in UTI and faeces. However, the predominant clones in faeces were not found in UTIs and it is possible that rep-PCR is not sufficiently discriminating clones.


Assuntos
Antibacterianos , Cistite , Infecções por Escherichia coli , Escherichia coli , Fezes , Testes de Sensibilidade Microbiana , Plasmídeos , Quinolonas , beta-Lactamases , Humanos , Feminino , beta-Lactamases/genética , Plasmídeos/genética , Fezes/microbiologia , Quinolonas/farmacologia , Gravidez , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Adulto , Antibacterianos/farmacologia , Cistite/microbiologia , Farmacorresistência Bacteriana/genética , Prevalência , Infecções Urinárias/microbiologia , Ácido Nalidíxico/farmacologia
3.
Microbiology (Reading) ; 170(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661713

RESUMO

Introduction. Leclercia adecarboxylata is a member of Enterobacterales, often considered an opportunistic pathogen. Recent reports have highlighted L. adecarboxylata as an emerging pathogen harbouring virulence and resistance determinants.Gap statement. Little information exists on virulence and resistance determinants in L. adecarboxylata strains isolated from environmental, food, and clinical samples.Aim. To determine the presence of resistance and virulence determinants and plasmid features in L. adecarboxylata strains isolated from environmental, food, and clinical samples, as well as their phylogenetic relationship.Results. All strains tested showed resistance to ß-lactams and quinolones but were sensitive to aminoglycosides and nitrofurans. However, even though fosfomycin resistance is considered a characteristic trait of L. adecarboxylata, the resistance phenotype was only observed in 50 % of the strains; bla TEM was the most prevalent BLEE gene (70 %), while the quinolone qnrB gene was observed in 60 % of the strains. Virulence genes were differentially observed in the strains, with adhesion-related genes being the most abundant, followed by toxin genes. Finally, all strains carried one to seven plasmid bands ranging from 7 to 125 kbps and harboured several plasmid addiction systems, such as ParDE, VagCD, and CcdAB in 80 % of the strains.Conclusions. L. adecarboxylata is an important emerging pathogen that may harbour resistance and virulence genes. Additionally, it has mobilizable genetic elements that may contribute to the dissemination of genetic determinants to other bacterial genera.


Assuntos
Antibacterianos , Enterobacteriaceae , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos , Fatores de Virulência , Antibacterianos/farmacologia , Plasmídeos/genética , Virulência/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/patogenicidade , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/classificação , Fatores de Virulência/genética , Humanos , Infecções por Enterobacteriaceae/microbiologia , Fenótipo , Farmacorresistência Bacteriana/genética , Quinolonas/farmacologia , beta-Lactamas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Microbiologia de Alimentos
4.
AAPS PharmSciTech ; 25(5): 90, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649513

RESUMO

To formulate and optimize Ozenoxacin nano-emulsion using Quality by Design (QbD) concept by means of Box-Behnken Design (BBD) and converting it to a gel to form Ozenoxacin nano-emulgel followed by physico-chemical, in-vitro, ex-vivo and in-vivo evaluation. This study demonstrates the application of QbD methodology for the development and optimization of an effective topical nanoemulgel formulation for the treatment of Impetigo focusing on the selection of appropriate excipients, optimization of formulation and process variables, and characterization of critical quality attributes. BBD was used to study the effect of "% of oil, % of Smix and homogenization speed" on critical quality attributes "globule size and % entrapment efficiency" for the optimisation of Ozenoxacin Nano-emulsion. Ozenoxacin loaded nano-emulgel was characterized for "description, identification, pH, specific gravity, amplitude sweep, viscosity, assay, organic impurities, antimicrobial effectiveness testing, in-vitro release testing, ex-vivo permeation testing, skin retention and in-vivo anti-bacterial activity". In-vitro release and ex-vivo permeation, skin retention and in-vivo anti-bacterial activity were found to be significantly (p < 0.01) higher for the nano-emulgel formulation compared to the innovator formulation (OZANEX™). Antimicrobial effectiveness testing was performed and found that even at 70% label claim of benzoic acid is effective to inhibit microbial growth in the drug product. The systematic application of QbD principles facilitated the successful development and optimization of a Ozenoxacin Nano-Emulsion. Optimised Ozenoxacin Nano-Emulgel can be considered as an effective alternative and found to be stable at least for 6 months at 40 °C / 75% RH and 30 °C / 75% RH.


Assuntos
Antibacterianos , Emulsões , Impetigo , Quinolonas , Animais , Impetigo/tratamento farmacológico , Camundongos , Quinolonas/administração & dosagem , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Emulsões/química , Nanopartículas/química , Géis/química , Química Farmacêutica/métodos , Modelos Animais de Doenças , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacologia , Aminopiridinas/química , Aminopiridinas/farmacocinética , Excipientes/química , Pele/efeitos dos fármacos , Pele/metabolismo , Testes de Sensibilidade Microbiana/métodos , Absorção Cutânea/efeitos dos fármacos , Administração Tópica , Viscosidade , Composição de Medicamentos/métodos
5.
Mol Biol Rep ; 51(1): 424, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491992

RESUMO

BACKGROUND: There has been a rise in the consumption of fluoroquinolones in human and veterinary medicine recently. This has contributed to the rising incidence of quinolone resistance in bacteria. This study aimed at the determination of the antibiotic resistance profile of ESBL-producing and fluoroquinolone-resistant E. coli (FQEC) isolated from animal waste obtained from the waste dumps of an agricultural farm and their carriage of genes encoding PMQR. METHODS AND RESULTS: Isolation of ESBL-producing E. coli from animal waste samples was done on CHROMagar ESBL, while presumptive isolates were purified, and identified via the detection of uidA gene. Susceptibility to a panel of ten antibiotics was done using the disc diffusion method, and detection of PMQR genes (qnrA, qnrB, qnrS, aac(6')-lb-cr, qepA and oqxAB) was done using monoplex and duplex PCR. Twenty-five ESBL-producing and FQEC were obtained from the cattle (6), piggery (7) and poultry (12) waste dumps of the farm. There was 100% resistance to cefpodoxime, cefotaxime, enrofloxacin, trimethoprim-sulfamethoxazole and penicillin by the isolates. The resistance to the other antibiotics was streptomycin (48%), ceftazidime (24%), while no isolate resisted amoxicillin-clavulanate and imipenem. The frequencies of PMQR genes detected were; qnrA (96%), oqxAB (96%), qnrB (92%), while  qnrS was detected in 88% (22) of the isolates. Aminoglycoside acetyltransferase (aac(6')-lb-cr) and quinolone efflux pump (qepA) were each detected in 20 (80%) of the isolates. CONCLUSIONS: This study showed that animal wastes disposed indiscriminately into dumps could be a budding 'hotspot' for multidrug resistant, ESBL-producing and fluoroquinolone-resistant E. coli carrying multiple genes encoding resistance to fluoroquinolone antibiotics.


Assuntos
Escherichia coli , Quinolonas , Humanos , Animais , Bovinos , Quinolonas/farmacologia , Fluoroquinolonas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
6.
PLoS Negl Trop Dis ; 18(2): e0011992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416775

RESUMO

Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide caused by Platyhelminthes of the genus Schistosoma. The treatment of schistosomiasis relies on the long-term application of a single safe drug, praziquantel (PZQ). Unfortunately, PZQ is very effective on adult parasites and poorly on larval stage and immature juvenile worms; this can partially explain the re-infection in endemic areas where patients are likely to host parasites at different developmental stages concurrently. Moreover, the risk of development of drug resistance because of the widespread use of a single drug in a large population is nowadays a serious threat. Hence, research aimed at identifying novel drugs to be used alone or in combination with PZQ is needed. Schistosomes display morphologically distinct stages during their life cycle and epigenetic mechanisms are known to play important roles in parasite growth, survival, and development. Histone deacetylase (HDAC) enzymes, particularly HDAC8, are considered valuable for therapeutic intervention for the treatment of schistosomiasis. Herein, we report the phenotypic screening on both larvae and adult Schistosoma mansoni stages of structurally different HDAC inhibitors selected from the in-house Siena library. All molecules have previously shown inhibition profiles on human HDAC6 and/or HDAC8 enzymes. Among them we identified a quinolone-based HDAC inhibitor, NF2839, that impacts larval and adult parasites as well as egg viability and maturation in vitro. Importantly, this quinolone-based compound also increases histone and tubulin acetylation in S. mansoni parasites, thus representing a leading candidate for the development of new generation anti-Schistosoma chemotherapeutics.


Assuntos
Anti-Helmínticos , Inibidores de Histona Desacetilases , Quinolonas , Esquistossomose mansoni , Esquistossomose , Animais , Humanos , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Desacetilase 6 de Histona/antagonistas & inibidores , Larva , Praziquantel/farmacologia , Praziquantel/uso terapêutico , Quinolonas/farmacologia , Proteínas Repressoras , Schistosoma mansoni , Esquistossomose/tratamento farmacológico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
7.
Diagn Microbiol Infect Dis ; 109(1): 116212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387214

RESUMO

Pseudomonas aeruginosa, one of the most notorious organisms, causes fatal diseases like-, meningitis, pneumonia as well as worsens the prognosis of cystic fibrosis patients. It is also multi-drug resistant and resists a wide range of antibiotics. Attempts have been made to reduce its virulence/pathogenic potential using a number of organic compounds. For this purpose, the Quorum sensing (QS) system of P. aeruginosa was targeted, which regulates its virulence. Pseudomonas Quinolone System (PQS), one of the four quorum sensing systems, producing pyocyanin pigment was chosen. 2-heptyl-3-hydroxy-4-quinolone (HHQ) is a ligand which binds to PQS protein is responsible for pyocyanin pigment production. Attempts were made to find a compound analogous to HHQ which could bind to PQS active site and inhibit the pigment formation. In-silico analysis was performed to estimate possible interactions and to find/predict the possible PQS inhibitors.


Assuntos
Infecções por Pseudomonas , Quinolonas , Humanos , Percepção de Quorum/fisiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas/metabolismo , Piocianina/metabolismo , Quinolonas/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Proteínas de Bactérias/metabolismo
8.
Phytochemistry ; 220: 114010, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354550

RESUMO

Five unusual alkaloids featuring a pyrrolo[1,2-a]quinolone skeleton (pyrroloquinolones B-F, 1-5) were isolated from the ethanol extract of the whole plant of Vernonia glabra (Steetz) Vatke, along with sixteen known compounds. Their structures were established by means of spectroscopic (1D and 2D NMR, UV, IR, and ECD) and high resolution mass spectrometric techniques as well as by comparison of their spectroscopic data with those reported in the literature. The ethanol extract and some isolated compounds were assessed for their antibacterial activity against four bacterial strains. The extract was significantly active against Staphylococcus aureus ATCC1026 and S. epidermidis ATCC35984 (MIC = 64 µg/mL). All the tested compounds showed moderate activity against S. epidermidis (16 ≤ MIC ≤ 64 µg/mL). Furthermore, this is the first report on tricyclic pyrrolo[1,2-a]quinolone alkaloids from a plant source. A biosynthetic pathway for the formation of these compounds is also proposed.


Assuntos
Alcaloides , Quinolonas , Vernonia , Vernonia/química , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Alcaloides/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Quinolonas/farmacologia , Etanol
9.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(2): 248-253, 2024 Feb 06.
Artigo em Chinês | MEDLINE | ID: mdl-38387958

RESUMO

By conducting retrospective analysis, this study aim to investigate the resistance mechanism of quinolones in non-typhoidal Salmonella (NTS). A total of 105 strains of NTS isolated from clinical specimens from the Fifth Affiliated Hospital of Southern Medical University from May 2020 to February 2021 were used as research objects. VITEK2 Compact automatic identification drug sensitivity analysis system and serological test were used to identify the strains. The sensitivity of the strains to ciprofloxacin, levofloxacin and nalidixic acid was detected by AGAR dilution method. The whole genome of 105 strains of NTS was sequenced. Abricate and other softwares were used to analyze drug-resistant genes, including plasmid-mediated quinolone resistance gene (PMQR) and Quinolone resistance determination region (QRDR). Serotypes and ST types were analyzed using SISTR and MLST, and phylogenetic trees were constructed. The results showed that the NTS isolated in this region were mainly ST34 Salmonella typhimurium (53.3%). The drug sensitivity results showed that the drug resistance rates of NTS to ciprofloxacin, levofloxacin and nalidixic acid were 30.4%, 1.9% and 22.0%, respectively, and the intermediate rates of ciprofloxacin and levofloxacin were 27.6% and 54.2%.A total of 46 (74.2%) of the 62 quinolone non-susceptible strains carried the PMQR gene, mainly qnrS1 (80.4%), followed by aac(6')-Ib-cr(15.2%); there were 14 NTS and 8 NTS had gyrA and parC gene mutations, respectively. The gyrA was mutations at the amino acid position 87, Asp87Tyr, Asp87Asn, Asp87Gly, and Thr57Ser mutations were detected in parC. In conclusion, this study found that NTS had relatively high resistance to quinolones, carrying qnrS1 gene mainly resulted in decreased sensitivity of NTS to ciprofloxacin and levofloxacin, and gyrA:87 mutation mainly resulted in NTS resistance to Nalidixic acid; Salmonella typhimurium in clinical isolates showed clonal transmission and required further epidemiological surveillance.


Assuntos
Quinolonas , Humanos , Quinolonas/farmacologia , Ácido Nalidíxico/farmacologia , Levofloxacino/farmacologia , Filogenia , Tipagem de Sequências Multilocus , Estudos Retrospectivos , DNA Girase/genética , Salmonella , Ciprofloxacina , Plasmídeos , Mutação , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética
11.
Bioorg Chem ; 144: 107112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237390

RESUMO

We report here the virtual screening design, synthesis and activity of eight new inhibitors of SphK1. For this study we used a pre-trained Graph Convolutional Network (GCN) combined with docking calculations. This exploratory analysis proposed nine compounds from which eight displayed significant inhibitory effect against sphingosine kinase 1 (SphK1) demonstrating a high level of efficacy for this approach. Four of these compounds also displayed anticancer activity against different tumor cell lines, and three of them (5), (6) and (7) have shown a wide inhibitory action against many of the cancer cell line tested, with GI50 below 5 µM, being (5) the most promising with TGI below 10 µM for the half of cell lines. Our results suggest that the three most promising compounds reported here are the pyrimidine-quinolone hybrids (1) and (6) linked by p-aminophenylsulfanyl and o-aminophenol fragments respectively, and (8) without such aryl linker. We also performed an exhaustive study about the molecular interactions that stabilize the different ligands at the binding site of SphK1. This molecular modeling analysis was carried out by using combined techniques: docking calculations, MD simulations and QTAIM analysis. In this study we also included PF543, as reference compound, in order to better understand the molecular behavior of these ligands at the binding site of SphK1.These results provide useful information for the design of new inhibitors of SphK1 possessing these structural scaffolds.


Assuntos
Antineoplásicos , Fosfotransferases (Aceptor do Grupo Álcool) , Quinolonas , Quinolonas/farmacologia , Inibidores de Proteínas Quinases , Antineoplásicos/química , Modelos Moleculares , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade , Estrutura Molecular
12.
J Med Chem ; 67(3): 1949-1960, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38252624

RESUMO

The suppressor of T cell receptor signaling (Sts) proteins are negative regulators of immune signaling. Genetic inactivation of these proteins leads to significant resistance to infection. From a 590,000 compound high-throughput screen, we identified the 2-(1H)-quinolinone derivative, rebamipide, as a putative inhibitor of Sts phosphatase activity. Rebamipide, and a small library of derivatives, are competitive, selective inhibitors of Sts-1 with IC50 values from low to submicromolar. SAR analysis indicates that the quinolinone, the acid, and the amide moieties are all essential for activity. A crystal structure confirmed the SAR and reveals key interactions between this class of compound and the protein. Although rebamipide has poor cell permeability, we demonstrated that a liposomal preparation can inactivate the phosphatase activity of Sts-1 in cells. These studies demonstrate that Sts-1 enzyme activity can be pharmacologically inactivated and provide foundational tools and insights for the development of immune-enhancing therapies that target the Sts proteins.


Assuntos
Alanina/análogos & derivados , Histidina , Quinolonas , Receptores de Antígenos de Linfócitos T , Quinolonas/farmacologia , Monoéster Fosfórico Hidrolases/química , Inibidores Enzimáticos
13.
Eur J Med Chem ; 265: 116120, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38194776

RESUMO

The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.


Assuntos
Fibrose Cística , Quinolonas , Adulto , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Desenvolvimento de Medicamentos , Quinolonas/farmacologia , Aminopiridinas , Mutação
14.
Sci Rep ; 14(1): 1179, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216602

RESUMO

One of the most promising new treatments for gonorrhoea currently in phase 3 clinical trials is zoliflodacin. Studies have found very little resistance to zoliflodacin in currently circulating N. gonorrhoeae strains, and in-vitro experiments demonstrated that it is difficult to induce resistance. However, zoliflodacin resistance may emerge in commensal Neisseria spp., which could then be transferred to N. gonorrhoeae via transformation. In this study, we investigated this commensal-resistance-pathway hypothesis for zoliflodacin. To induce zoliflodacin resistance, ten wild-type susceptible isolates belonging to 5 Neisseria species were serially passaged for up to 48 h on gonococcal agar plates containing increasing zoliflodacin concentrations. Within 7 to 10 days, all strains except N. lactamica, exhibited MICs of ≥ 4 µg/mL, resulting in MIC increase ranging from 8- to 64-fold. The last passaged strains and their baseline were sequenced. We detected mutations previously reported to cause zoliflodacin resistance in GyrB (D429N and S467N), novel mutations in the quinolone resistance determining region (QRDR) (M464R and T472P) and mutations outside the QRDR at amino acid positions 28 and 29 associated with low level resistance (MIC 2 µg/mL). Genomic DNA from the laboratory evolved zoliflodacin-resistant strains was transformed into the respective baseline wild-type strain, resulting in MICs of ≥ 8 µg/mL in most cases. WGS of transformants with decreased zoliflodacin susceptibility revealed presence of the same zoliflodacin resistance determinants as observed in the donor strains. Two inter-species transformation experiments were conducted to investigate whether zoliflodacin resistance determinants of commensal Neisseria spp. could be acquired by N. gonorrhoeae. N. gonorrhoeae strain WHO P was exposed to (i) pooled genomic DNA from the two resistant N. mucosa strains and (ii) a gyrB amplicon of the resistant N. subflava strain 45/1_8. Transformants of both experiments exhibited an MIC of 2 µg/mL and whole genome analysis revealed uptake of the mutations detected in the donor strains. This is the first in-vitro study to report that zoliflodacin resistance can be induced in commensal Neisseria spp. and subsequently transformed into N. gonorrhoeae.


Assuntos
Barbitúricos , Gonorreia , Isoxazóis , Morfolinas , Oxazolidinonas , Quinolonas , Compostos de Espiro , Humanos , Neisseria/genética , Neisseria gonorrhoeae , Quinolonas/farmacologia , Testes de Sensibilidade Microbiana , DNA , Antibacterianos/farmacologia
15.
Mymensingh Med J ; 33(1): 183-191, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163791

RESUMO

This cross-sectional study was conducted to explore quinolone resistant Enterobacteriaceae followed by searching the prevalence of three groups of quinolone resistance genes (QnrA, QnrB and QnrS) from January 2015 to December 2015 at Dhaka Medical College hospital, Bangladesh. Then genes for ESBL and AmpC ß-lactamase were detected among Qnr positive strains for better understanding the role of these genes for multiple drug resistance. Total 340 urines, sputum, wound swab and blood samples were collected from DMCH. Total 270(79.41%) Enterobacteriaceae were isolated from 340 samples. Out of 270 Enterobacteriaceae, 225(83.33%) were quinolone (ciprofloxacin) resistant strains. Qnr genes were detected in 141(62.67%) of the 225 quinolone resistant Enterobacteriaceae. Total 187 Qnr genes [84(59.57%) QnrS, 70(49.64%) QnrB and 33(23.40%) QnrA] were detected from 141 quinolone resistant strains. Total 48(34.04%) ESBL producers were detected by DDS test and 47(33.33%) ESBL producers were positive by PCR among 141 Qnr positive strains. QnrA was co-existed with CTX-M-15. QnrB was co-existed with TEM, CTXM-15 and OXA-1. QnrS genes were also associated with TEM, CTX-M-15 and OXA-1. Among 52 cefoxitin resistant Qnr positive strains, 22(42.31%) AmpC ß-lactamase producers were detected by Modified three-dimensional test (MTDT) and 45(86.54%) AmpC ß-lactamase producers were detected by PCR. QnrA had been identified with DHA, ACC, EBC and CIT while QnrB had been identified with DHA, ACC, EBC and CIT. QnrS had also been co-existed with DHA, ACC, EBC and CIT. The results of this study provided insights into the high proportion of Qnr genes among isolated Enterobacteriaceae. Simultaneous presence of Qnr genes and genes for extended-spectrum ß-lactamase or AmpC ß-lactamase were observed in multidrug resistant Enterobacteriaceae.


Assuntos
Infecções por Enterobacteriaceae , Quinolonas , Humanos , Enterobacteriaceae/genética , Quinolonas/farmacologia , Bangladesh , Estudos Transversais , Antibacterianos/farmacologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/epidemiologia , Farmacorresistência Bacteriana/genética , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
16.
J Infect Public Health ; 17(3): 457-463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262083

RESUMO

BACKGROUND: Our objective was to investigate the prevalence of plasmid-mediated quinolone resistance (PMQR) genes in fluoroquinolone-nonsusceptible Klebsiella pneumoniae (FQNSKP) in Taiwan, 1999-2022. METHODS: A total of 938 FQNSKP isolates were identified from 1966 isolates. The presence of PMQR and virulence genes, antimicrobial susceptibility, capsular types, and PMQR-plasmid transferability were determined. RESULTS: An increasing number of PMQR-containing FQNSKP isolates were observed over the study period. Our results showed that 69.0% (647 isolates) of FQNSKP isolates contained at least one PMQR gene, and 40.6%, 37.0%, and 33.9% of FQNSKP carried aac(6')-Ib-cr, qnrB, and qnrS, respectively. None of FQNSKP carried qepA and qnrC. The most common combination of PMQR genes was aac(6')-Ib-cr and qnrB (12.3%). The presence of PMQR genes is strongly related to resistance to aminoglycoside, cephalosporin, tetracycline, and sulfamethoxazole/trimethoprim in FQNSKP. The capsular serotype K64 is the most common serotype we tested in both the non-PMQR and PMQR FQNSKP isolates, while K20 showed a higher prevalence in PMQR isolates. The magA and peg-344 genes showed a significantly higher prevalence rate in non-PMQR isolates than in PMQR isolates. Eleven isolates that carried the PMQR and carbapenemase genes were identified; however, three successful transconjugants showed that the PMQR and carbapenemase genes were not located on the same plasmid. CONCLUSIONS: Our results indicated an increasing prevalence of PMQR genes, especially qnrB and qnrS, in FQNSKP in Taiwan. Moreover, the distribution of PMQR genes was associated with capsular serotypes and antimicrobial resistance gene and virulence gene distribution in FQNSKP.


Assuntos
Klebsiella pneumoniae , Quinolonas , Humanos , Fluoroquinolonas/farmacologia , Prevalência , Taiwan/epidemiologia , Plasmídeos/genética , Quinolonas/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
17.
J Med Chem ; 67(2): 1008-1023, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170170

RESUMO

Pseudomonas aeruginosa is one of the top priority pathogens that requires immediate attention according to the World Health Organisation (WHO). Due to the alarming shortage of novel antimicrobials, targeting quorum sensing (QS), a bacterial cell to cell signaling system controlling virulence, has emerged as a promising approach as an antibiotic adjuvant therapy. Interference with the pqs system, one of three QS systems in P. aeruginosa, results in reduction of bacterial virulence gene expression and biofilm maturation. Herein, we report a hit to lead process to fine-tune the potency of our previously reported inhibitor 1 (IC50 3.2 µM in P. aeruginosa PAO1-L), which led to the discovery of 2-(4-(3-((6-chloro-1-isopropyl-1H-benzo[d]imidazol-2-yl)amino)-2-hydroxypropoxy)phenyl)acetonitrile (6f) as a potent PqsR antagonist. Compound 6f inhibited the PqsR-controlled PpqsA-lux transcriptional reporter fusion in P. aeruginosa at low submicromolar concentrations. Moreover, 6f showed improved efficacy against P. aeruginosa CF isolates with significant inhibition of pyocyanin, 2-alkyl-4(1H)-quinolones production.


Assuntos
Infecções por Pseudomonas , Quinolonas , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Percepção de Quorum , Biofilmes , Quinolonas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Imidazóis/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias , Fatores de Virulência
18.
Anal Chem ; 96(5): 2032-2040, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277772

RESUMO

In situ profiling of single-nucleotide variations (SNVs) can elucidate drug-resistant genotypes with single-cell resolution. The capacity to directly "see" genetic information is crucial for investigating the relationship between mutated genes and phenotypes. Fluorescence in situ hybridization serves as a canonical tool for genetic imaging; however, it cannot detect subtle sequence alteration including SNVs. Herein, we develop an in situ Cas12a-based amplification refractory mutation system-PCR (ARMS-PCR) method that allows the visualization of SNVs related to quinolone resistance inside cells. The capacity of discriminating SNVs is enhanced by incorporating optimized mismatched bases in the allele-specific primers, thus allowing to specifically amplify quinolone-resistant related genes. After in situ ARMS-PCR, we employed a modified Cas12a/CRISPR RNA to tag the amplicon, thereby enabling specific binding of fluorophore-labeled DNA probes. The method allows to precisely quantify quinolone-resistant Salmonella enterica in the bacterial mixture. Utilizing this method, we investigated the survival competition capacity of quinolone-resistant and quinolone-sensitive bacteria toward antimicrobial peptides and indicated the enrichment of quinolone-resistant bacteria under colistin sulfate stress. The in situ Cas12a-based ARMS-PCR method holds the potential for profiling cellular phenotypes and gene regulation with single-nucleotide resolution at the single-cell level.


Assuntos
Quinolonas , Salmonella enterica , Sistemas CRISPR-Cas/genética , Alelos , Hibridização in Situ Fluorescente , Quinolonas/farmacologia , Salmonella enterica/genética , Reação em Cadeia da Polimerase
19.
Microbiol Spectr ; 11(6): e0243123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37975686

RESUMO

IMPORTANCE: This study first reported the in vitro effector kinetics of the new non-fluorinated quinolone, nemonoxacin, against macrolide-resistant M. pneumoniae (MRMP) and macrolide susceptible M. pneumoniae (MSMP) strains along with other antimicrobial agents. The time-kill assays and pharmacodynamic analysis showed that nemonoxacin has significant mycoplasmacidal activity against MRMP and MSMP. This study paves the road to establish appropriate dosing protocols of a new antimicrobial drug for children infected with M. pneumoniae.


Assuntos
Pneumonia por Mycoplasma , Quinolonas , Criança , Humanos , Mycoplasma pneumoniae , Pneumonia por Mycoplasma/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Quinolonas/farmacologia , Macrolídeos/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana
20.
Lancet Microbe ; 4(12): e1005-e1014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952554

RESUMO

BACKGROUND: The continued emergence of Salmonella enterica serovar Typhi, with ever increasing antimicrobial resistance, necessitates the use of vaccines in endemic countries. A typhoid fever outbreak in Harare, Zimbabwe, in 2018 from a multidrug resistant S Typhi with additional resistance to ciprofloxacin was the catalyst for the introduction of a typhoid conjugate vaccine programme. We aimed to investigate the emergence and evolution of antimicrobial resistance of endemic S Typhi in Zimbabwe and to determine the population structure, gene flux, and sequence polymorphisms of strains isolated before a typhoid conjugate vaccine programme to provide a baseline for future evaluation of the effect of the vaccination programme. METHODS: In this genomic epidemiology study, we used short-read whole-genome sequencing of S Typhi isolated from clinical cases of typhoid fever in Harare, Zimbabwe, between Jan 1, 2012, and Feb 9, 2019, to determine the S Typhi population structure, gene flux, and sequence polymorphisms and reconstructed the evolution of antimicrobial resistance. Maximum likelihood time-scaled phylogenetic trees of Zimbabwe isolates in the context of global isolates obtained from the National Center for Biotechnology Information were constructed to infer spread and emergence of antimicrobial resistance. FINDINGS: The population structure of S Typhi in Harare, Zimbabwe, from 2012 to 2019 was dominated by multidrug resistant genotype 4.3.1.1.EA1 (H58) that spread to Zimbabwe from neighbouring countries in around 2009 (95% credible interval 2008·5-2010·0). Acquisition of an IncN plasmid carrying antimicrobial resistance genes including a qnrS gene and a mutation in the quinolone resistance determining region of gyrA gene contributed to non-susceptibility and resistance to quinolone antibiotics. A minority population of antimicrobial susceptible S Typhi genotype 3.3.1 strains were present throughout. INTERPRETATION: The currently dominant S Typhi population is genotype 4.3.1.1 that spread to Zimbabwe and acquired additional antimicrobial resistance though acquisition of a plasmid and mutation in the gyrA gene. This study provides a baseline population structure for future evaluation of the effect of the typhoid conjugate vaccine programme in Harare. FUNDING: Bill & Melinda Gates Foundation and the Biotechnology and Biological Sciences Research Council Institute Strategic Programme.


Assuntos
Quinolonas , Salmonella enterica , Febre Tifoide , Vacinas Tíficas-Paratíficas , Humanos , Febre Tifoide/epidemiologia , Febre Tifoide/prevenção & controle , Vacinas Conjugadas , Vacinas Tíficas-Paratíficas/farmacologia , Zimbábue/epidemiologia , Filogenia , Salmonella typhi/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Quinolonas/farmacologia , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...